摘要:

当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下:

1.限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。;

2.读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读;

缓存: 使用MySQL的缓存,另外对重量级、更新少的数据可以考虑使用应用级别的缓存;

垂直分区:

根据数据库里面数据表的相关性进行拆分。 例如,用户表中既有用户的登录信息又有用户的基本信息,可以将用户表拆分成两个单独的表,甚至放到单独的库做分库。

简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。 如下图所示,这样来说大家应该就更容易理解了。

MySQL大表优化方案

 

垂直拆分的优点: 可以使得行数据变小,在查询时减少读取的Block数,减少I/O次数。此外,垂直分区可以简化表的结构,易于维护。

垂直拆分的缺点: 主键会出现冗余,需要管理冗余列,并会引起Join操作,可以通过在应用层进行Join来解决。此外,垂直分区会让事务变得更加复杂;

水平分区:

保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。 水平拆分可以支撑非常大的数据量。

水平拆分是指数据表行的拆分,表的行数超过200万行时,就会变慢,这时可以把一张的表的数据拆成多张表来存放。举个例子:我们可以将用户信息表拆分成多个用户信息表,这样就可以避免单一表数据量过大对性能造成影响。

MySQL大表优化方案

 

水品拆分可以支持非常大的数据量。需要注意的一点是:分表仅仅是解决了单一表数据过大的问题,但由于表的数据还是在同一台机器上,其实对于提升MySQL并发能力没有什么意义,所以 水品拆分最好分库 。

水平拆分能够 支持非常大的数据量存储,应用端改造也少,但 分片事务难以解决 ,跨界点Join性能较差,逻辑复杂。《Java工程师修炼之道》的作者推荐 尽量不要对数据进行分片,因为拆分会带来逻辑、部署、运维的各种复杂度 ,一般的数据表在优化得当的情况下支撑千万以下的数据量是没有太大问题的。如果实在要分片,尽量选择客户端分片架构,这样可以减少一次和中间件的网络I/O。

下面补充一下数据库分片的两种常见方案:

客户端代理: 分片逻辑在应用端,封装在jar包中,通过修改或者封装JDBC层来实现。 当当网的 Sharding-JDBC 、阿里的TDDL是两种比较常用的实现。

中间件代理: 在应用和数据中间加了一个代理层。分片逻辑统一维护在中间件服务中。 我们现在谈的 Mycat 、360的Atlas、网易的DDB等等都是这种架构的实现。

一、单表优化

除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整型值为主的表在千万级以下字符串为主的表在五百万以下是没有太大问题的。而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量:

1.1字段

1尽量使用TINYINT、SMALLINT、MEDIUM_INT作为整数类型而非INT,如果非负则加上UNSIGNED

2VARCHAR长度只分配真正需要的空间

3使用枚举或整数代替字符串类型

4尽量使用TIMESTAMP非DATETIME

5单表不要有太多字段,建议在20以内

6避免使用NULL字段,很难查询优化占用额外索引空间

7用整型来存IP

1.2索引

1.索引并不是越多越好,要根据查询有针对性的创建,考虑在WHERE和ORDER BY命令上涉及的列建立索引,可根据EXPLAIN来查看是否用了索引还是全表扫描

2.应尽量避免WHERE子句中对字段进行NULL值判断,否则将导致引擎放弃使用索引而进行全表扫描

3.值分布很稀少的字段不适合建索引,例如"性别"这种只有两三个值的字段

4字符字段只建前缀索引

5字符字段最好不要做主键

6不用外键,由程序保证约束

7尽量不用UNIQUE,由程序保证约束

8使用多列索引时主意顺序和查询条件保持一致,同时删除不必要的单列索引

1.3查询SQL

1.可通过开启慢查询日志来找出较慢的SQL

2.不做列运算:SELECT id WHERE age + 1 = 10,任何对列的操作都将导致表扫描,它包括数据库教程函数、计算表达式等等,查询时要尽可能将操作移至等号右边

3.sql语句尽可能简单:一条sql只能在一个cpu运算;大语句拆小语句,减少锁时间;一条大sql可以堵死整个库

4.用SELECT *

5.OR改写成IN:OR的效率是n级别,IN的效率是log(n)级别,in的个数建议控制在200以内

6.不用函数和触发器,在应用程序实现

7.避免%xxx式查询

8.少用JOIN

9.使用同类型进行比较,比如用'123'和'123'比,123和123比

10.尽量避免WHERE子句中使用!=或<>操作符,否则引擎放弃使用索引而进行全表扫描

11.对于连续数值,使用BETWEEN不用IN:SELECT id FROM t WHERE num BETWEEN 1 AND 5

12.列表数据不要拿全表,要使用LIMIT来分页,每页数量也不要太大

1.4引擎

目前广泛使用的是MyISAM和InnoDB两种引擎:

MyISAM

MyISAM引擎是MySQL 5.1及之前版本的默认引擎,它的特点是:

不支持:事务、外键、崩溃后的安全恢复、行锁(读取时对需要读到的所有加锁入时则对表加排它锁)

支持:在表有读取查询的同时,支持往表中插入新纪录

支持BLOB和TEXT的前500个字符索引,支持全文索引

支持延迟更新索引,极大提升写入性能

对于不会进行修改的表,支持压缩表,极大减少磁盘空间占用

InnoDB

InnoDB在MySQL 5.5后成为默认索引,它的特点是:

支持事务、外键、崩溃后的安全恢复、行锁,采用MVCC来支持高并发

不支持全文索引

总体来讲,MyISAM适合SELECT密集型的表,而InnoDB适合INSERTUPDATE密集型的表

二、系统调优参数

可以使用下面几个工具来做基准测试:

sysbench:一个模块化,跨平台以及多线程的性能测试工具

iibench-mysql:基于 Java 的 MySQL/Percona/MariaDB 索引进行插入性能测试工具

tpcc-mysql:Percona开发的TPC-C测试工具

具体的调优参数内容较多,具体可参考官方文档,这里介绍一些比较重要的参数:

back_log:back_log值指出在MySQL暂时停止回答新请求之前的短时间内多少个请求可以被存在堆栈中。也就是说,如果MySql的连接数据达到max_connections时,新来的请求将会被存在堆栈中,以等待某一连接释放资源,该堆栈的数量即back_log,如果等待连接的数量超过back_log,将不被授予连接资源。可以从默认的50升至500

wait_timeout:数据库连接闲置时间,闲置连接会占用内存资源。可以从默认的8小时减到半小时

max_user_connection: 最大连接数,默认为0无上限,最好设一个合理上限

thread_concurrency:并发线程数,设为CPU核数的两倍

skip_name_resolve:禁止对外部连接进行DNS解析,消除DNS解析时间,但需要所有远程主机用IP访问

key_buffer_size:索引块的缓存大小,增加会提升索引处理速度,对MyISAM表性能影响最大。对于内存4G左右,可设为256M或384M,通过查询show status like 'key_read%',保证key_reads / key_read_requests在0.1%以下最好

innodb_buffer_pool_size:缓存数据块和索引块,对InnoDB表性能影响最大。通过查询show status like 'Innodb_buffer_pool_read%',保证 (Innodb_buffer_pool_read_requests – Innodb_buffer_pool_reads) / Innodb_buffer_pool_read_requests越高越好

innodb_additional_mem_pool_size:InnoDB存储引擎用来存放数据字典信息以及一些内部数据结构的内存空间大小,当数据库对象非常多的时候,适当调整该参数的大小以确保所有数据都能存放在内存中提高访问效率,当过小的时候,MySQL会记录Warning信息到数据库的错误日志中,这时就需要该调整这个参数大小

innodb_log_buffer_size:InnoDB存储引擎的事务日志所使用的缓冲区,一般来说不建议超过32MB

query_cache_size:缓存MySQL中的ResultSet,也就是一条SQL语句执行的结果集,所以仅仅只能针对select语句。当某个表的数据有任何任何变化,都会导致所有引用了该表的select语句在Query Cache中的缓存数据失效。所以,当我们的数据变化非常频繁的情况下,使用Query Cache可能会得不偿失。根据命中率(Qcache_hits/(Qcache_hits+Qcache_inserts)*100))进行调整,一般不建议太大,256MB可能已经差不多了,大型的配置型静态数据可适当调大.

可以通过命令show status like 'Qcache_%'查看目前系统Query catch使用大小

read_buffer_size:MySql读入缓冲区大小。对表进行顺序扫描的请求将分配一个读入缓冲区,MySql会为它分配一段内存缓冲区。如果对表的顺序扫描请求非常频繁,可以通过增加该变量值以及内存缓冲区大小提高其性能

sort_buffer_size:MySql执行排序使用的缓冲大小。如果想要增加ORDER BY的速度,首先看是否可以让MySQL使用索引而不是额外的排序阶段。如果不能,可以尝试增加sort_buffer_size变量的大小

read_rnd_buffer_size:MySql的随机读缓冲区大小。当按任意顺序读取行时(例如,按照排序顺序),将分配一个随机读缓存区。进行排序查询时,MySql会首先扫描一遍该缓冲,以避免磁盘搜索,提高查询速度,如果需要排序大量数据,可适当调高该值。但MySql会为每个客户连接发放该缓冲空间,所以应尽量适当设置该值,以避免内存开销过大。

record_buffer:每个进行一个顺序扫描的线程为其扫描的每张表分配这个大小的一个缓冲区。如果你做很多顺序扫描,可能想要增加该值

thread_cache_size:保存当前没有与连接关联但是准备为后面新的连接服务的线程,可以快速响应连接的线程请求而无需创建新的

table_cache:类似于thread_cache_size,但用来缓存表文件,对InnoDB效果不大,主要用于MyISAM

三、升级硬件

Scale up,这个不多说了,根据MySQL是CPU密集型还是I/O密集型,通过提升CPU和内存、使用SSD,都能显著提升MySQL性能

四、读写分离

也是目前常用的优化,从库读主库写,一般不要采用双主多主引入很多复杂性,尽量采用文中的其他方案来提高性能。同时目前很多拆分的解决方案同时也兼顾考虑了读写分离

五、缓存

缓存可以发生在这些层次

MySQL内部:在系统调优参数介绍了相关设置

数据访问层:比如MyBatis针对SQL语句做缓存,而Hibernate可以精确到单个记录,这里缓存的对象主要是持久化对象Persistence Object

应用服务层:这里可以通过编程手段对缓存做到更精准的控制和更多的实现策略,这里缓存的对象是数据传输对象Data Transfer Object

Web层:针对web页面做缓存

浏览器客户端:用户端的缓存

可以根据实际情况在一个层次或多个层次结合加入缓存。这里重点介绍下服务层的缓存实现,目前主要有两种方式

1.直写式(Write Through):

在数据写入数据库后,同时更新缓存,维持数据库与缓存的一致性。这也是当前大多数应用缓存框架如Spring Cache的工作方式。这种实现非常简单,同步好,但效率一般

2.回写式(Write Back)

当有数据要写入数据库时,只会更新缓存,然后异步批量的将缓存数据同步到数据库上。这种实现比较复杂,需要较多的应用逻辑,同时可能会产生数据库与缓存的不同步,但效率非常高

五、表分区

MySQL在5.1版引入的分区是一种简单的水平拆分,用户需要在建表的时候加上分区参数,对应用是透明的无需修改代码

对用户来说,分区表是一个独立的逻辑表,但是底层由多个物理子表组成,实现分区的代码实际上是通过对一组底层表对象封装,但对SQL层来说是一个完全封装底层的黑盒子。MySQL实现分区的方式也意味着索引也是按照分区子表定义没有全局索引

MySQL大表优化方案

 

用户的SQL语句是需要针对分区表优化,SQL条件中要带上分区条件的列,从而使查询定位到少量的分区上,否则就会扫描全部分区,可以通过EXPLAIN PARTITIONS来查看某条SQL语句会落在那些分区上,从而进行SQL优化,如下图5条记录落在两个分区上:

MySQL大表优化方案

 

MySQL大表优化方案

 

5.1分区的好处是:

1.可以让单表存储更多的数据

2.分区表的数据更容易维护,可以通过清楚整个分区批量删除大量数据,也可以增加新的分区来支持新插入的数据。另外,还可以对一个独立分区进行优化、检查、修复等操作

3.部分查询能够从查询条件确定只落在少数分区上,速度会很快

4.分区表的数据还可以分布不同的物理设备上,从而高效利用多个硬件设备

5.可以使用分区表来避免某些特殊瓶颈,例如InnoDB单个索引的互斥访问ext3文件系统的inode锁竞争

6.可以备份和恢复单个分区

5.2分区的限制和缺点:

1.一个表最多只能有1024个分区

2.如果分区字段中有主键或者唯一索引的列,那么所有主键列唯一索引列都必须包含进来

3.分区表无法使用外键约束

4.NULL值会使分区过滤无效

5.所有分区必须使用相同的存储引擎

5.3分区的类型:

RANGE分区:基于属于一个给定连续区间的列值,把多行分配给分区

LIST分区:类似于按RANGE分区,区别在于LIST分区是基于列值匹配一个离散值集合中的某个值来进行选择

HASH分区:基于用户定义的表达式的返回值来进行选择的分区,该表达式使用将要插入到表中的这些行的列值进行计算。这个函数可以包含MySQL中有效的、产生非负整数值的任何表达式

KEY分区:类似于按HASH分区,区别在于KEY分区只支持计算一列或多列,且MySQL服务器提供其自身的哈希函数。必须有一列或多列包含整数值

5.4分区适合的场景有:

1.最适合的场景数据的时间序列性比较强,则可以按时间来分区,如下所示:

MySQL大表优化方案

 

查询时加上时间范围条件效率会非常高,同时对于不需要的历史数据能很容的批量删除。

2.如果数据有明显的热点,而且除了这部分数据,其他数据很少被访问到,那么可以将热点数据单独放在一个分区,让这个分区的数据能够有机会都缓存在内存中,查询时只访问一个很小的分区表,能够有效使用索引和缓存

另外MySQL有一种早期的简单的分区实现 - 合并表(merge table),限制较多且缺乏优化,不建议使用,应该用新的分区机制来替代

六、垂直拆分

垂直分库是根据数据库里面的数据表的相关性进行拆分,比如:一个数据库里面既存在用户数据,又存在订单数据,那么垂直拆分可以把用户数据放到用户库、把订单数据放到订单库。垂直分表是对数据表进行垂直拆分的一种方式,常见的是把一个多字段的大表按常用字段和非常用字段进行拆分,每个表里面的数据记录数一般情况下是相同的,只是字段不一样,使用主键关联

比如原始的用户表是:

MySQL大表优化方案

 

垂直拆分后是:

MySQL大表优化方案

 

垂直拆分的优点是:

1.可以使得行数据变小,一个数据块(Block)就能存放更多的数据,在查询时就会减少I/O次数(每次查询时读取的Block 就少)

2.可以达到最大化利用Cache的目的,具体在垂直拆分的时候可以将不常变的字段放一起,将经常改变的放一起

3.数据维护简单

缺点是:

1.主键出现冗余,需要管理冗余列

2.会引起表连接JOIN操作(增加CPU开销)可以通过在业务服务器上进行join来减少数据库压力

3.依然存在单表数据量过大的问题(需要水平拆分)

4.事务处理复杂

七、水平拆分

概述

水平拆分是通过某种策略将数据分片来存储,分库内分表分库两部分,每片数据会分散到不同的MySQL表或库,达到分布式的效果,能够支持非常大的数据量。前面的表分区本质上也是一种特殊的库内分表

库内分表,仅仅是单纯的解决了单一表数据过大的问题,由于没有把表的数据分布到不同的机器上,因此对于减轻MySQL服务器的压力来说,并没有太大的作用,大家还是竞争同一个物理机上的IO、CPU、网络,这个就要通过分库来解决

前面垂直拆分的用户表如果进行水平拆分,结果是:

MySQL大表优化方案

 

实际情况中往往会是垂直拆分和水平拆分的结合,即将Users_A_M和Users_N_Z再拆成Users和UserExtras,这样一共四张表

水平拆分的优点是:

不存在单库大数据高并发的性能瓶颈

应用端改造较少

提高了系统的稳定性和负载能力

缺点是:

分片事务一致性难以解决

跨节点Join性能差,逻辑复杂

数据多次扩展难度维护量极大

作者:hedgehog1112
链接:https://www.jianshu.com/p/27d4e57a8662
Logo

更多推荐